Format

Send to

Choose Destination
See comment in PubMed Commons below
Nucleic Acids Res. 2013 Mar 1;41(5):3162-72. doi: 10.1093/nar/gkt043. Epub 2013 Feb 1.

In the absence of ATPase activity, pre-RC formation is blocked prior to MCM2-7 hexamer dimerization.

Author information

1
DNA Replication Group, MRC Clinical Sciences Centre, Imperial College, London W12 0NN, UK.

Abstract

The origin recognition complex (ORC) of Saccharomyces cerevisiae binds origin DNA and cooperates with Cdc6 and Cdt1 to load the replicative helicase MCM2-7 onto DNA. Helicase loading involves two MCM2-7 hexamers that assemble into a double hexamer around double-stranded DNA. This reaction requires ORC and Cdc6 ATPase activity, but it is unknown how these proteins control MCM2-7 double hexamer formation. We demonstrate that mutations in Cdc6 sensor-2 and Walker A motifs, which are predicted to affect ATP binding, influence the ORC-Cdc6 interaction and MCM2-7 recruitment. In contrast, a Cdc6 sensor-1 mutant affects MCM2-7 loading and Cdt1 release, similar as a Cdc6 Walker B ATPase mutant. Moreover, we show that Orc1 ATP hydrolysis is not involved in helicase loading or in releasing ORC from loaded MCM2-7. To determine whether Cdc6 regulates MCM2-7 double hexamer formation, we analysed complex assembly. We discovered that inhibition of Cdc6 ATPase restricts MCM2-7 association with origin DNA to a single hexamer, while active Cdc6 ATPase promotes recruitment of two MCM2-7 hexamer to origin DNA. Our findings illustrate how conserved Cdc6 AAA+ motifs modulate MCM2-7 recruitment, show that ATPase activity is required for MCM2-7 hexamer dimerization and demonstrate that MCM2-7 hexamers are recruited to origins in a consecutive process.

PMID:
23376927
PMCID:
PMC3597701
DOI:
10.1093/nar/gkt043
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems Icon for PubMed Central
    Loading ...
    Support Center