Format

Send to

Choose Destination
See comment in PubMed Commons below
Environ Sci Technol. 2013 Jul 2;47(13):6781-9. doi: 10.1021/es3044517. Epub 2013 Feb 22.

Acid-catalyzed transformation of ionophore veterinary antibiotics: reaction mechanism and product implications.

Author information

1
School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.

Abstract

Ionophore antibiotics (IPAs) are polyether antimicrobials widely used in the livestock industry and may enter the environment via land application of animal waste and agricultural runoff. Information is scarce regarding potential transformation of IPAs under environmental conditions. This study is among the first to identify the propensity of IPAs to undergo acid-catalyzed transformation in mildly acidic aquatic systems and characterize the reactions in depth. The study focused on the most widely used monensin (MON) and salinomycin (SAL), and also included narasin (NAR) in the investigation. All three IPAs are susceptible to acid-catalyzed transformation. MON reacts much more slowly than SAL and NAR and exhibits a different kinetic behavior that is further evaluated by a reversible reaction kinetic model. Extensive product characterization identifies that the spiro-ketal group of IPAs is the reactive site for the acid-catalyzed hydrolytic transformation, yielding predominantly isomeric and other products. Toxicity evaluation of the transformation products shows that the products retain some antimicrobial properties. The occurrence of IPAs and isomeric transformation products is also observed in poultry litter and agricultural runoff samples. Considering the common presence of mildly acidic environments (pH 4-7) in soils and waters, the acid-catalyzed transformation identified in this study likely plays an important role in the environmental fate of IPAs.

PMID:
23373828
DOI:
10.1021/es3044517
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center