Format

Send to

Choose Destination
See comment in PubMed Commons below
Tissue Eng Part C Methods. 2013 Oct;19(10):745-54. doi: 10.1089/ten.TEC.2012.0620. Epub 2013 Mar 12.

Sustainable three-dimensional tissue model of human adipose tissue.

Author information

1
Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA.

Abstract

The need for physiologically relevant sustainable human adipose tissue models is crucial for understanding tissue development, disease progression, in vitro drug development and soft tissue regeneration. The coculture of adipocytes differentiated from human adipose-derived stem cells, with endothelial cells, on porous silk protein matrices for at least 6 months is reported, while maintaining adipose-like outcomes. Cultures were assessed for structure and morphology (Oil Red O content and CD31 expression), metabolic functions (leptin, glycerol production, gene expression for GLUT4, and PPARγ) and cell replication (DNA content). The cocultures maintained size and shape over this extended period in static cultures, while increasing in diameter by 12.5% in spinner flask culture. Spinner flask cultures yielded improved adipose tissue outcomes overall, based on structure and function, when compared to the static cultures. This work establishes a tissue model system that can be applied to the development of chronic metabolic dysfunction systems associated with human adipose tissue, such as obesity and diabetes, due to the long term sustainable functions demonstrated here.

PMID:
23373822
PMCID:
PMC3751318
DOI:
10.1089/ten.TEC.2012.0620
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon Icon for PubMed Central
    Loading ...
    Support Center