Send to

Choose Destination
See comment in PubMed Commons below
Int J Cardiol. 2013 Sep 30;168(2):1447-52. doi: 10.1016/j.ijcard.2012.12.094. Epub 2013 Jan 27.

TWIST1 regulates the activity of ubiquitin proteasome system via the miR-199/214 cluster in human end-stage dilated cardiomyopathy.

Author information

Center for Cardiovascular Research, Charité Medical School, Berlin, Germany; Applied Cachexia Research, Department of Cardiology, Charité Medical School, Berlin, Germany.



The transcription factor TWIST1 has been described to regulate the microRNA (miR)-199/214 cluster. Genetic disruption of TWIST1 resulted in a cachectic phenotype and early death of the knock-out mice. This might be connected to the activity of the ubiquitin-proteasome-system (UPS), as miR-199a has been suggested to regulate the ubiquitin E2 ligases Ube2i and Ube2g1.


Cardiac tissue from explanted hearts of 42 patients with dilated cardiomyopathy and 20 healthy donor hearts were analysed for protein expression of TWIST1 and its inhibitors Id-1, MuRF-1 and MAFbx, the expression of miR-199a, -199b and -214, as well as the activity of the UPS by using specific fluorogenic substrates.


TWIST1 was repressed in patients with dilated cardiomyopathy by 43% (p=0.003), while Id1 expression was unchanged. This was paralleled by a reduced expression of miR-199a by 38 ± 9% (p=0.053), miR-199b by 36 ± 13% (p=0.019) and miR-214 by 41 ± 11% (p=0.0158) compared to donor hearts. An increased peptidylglutamyl-peptide-hydrolysing activity (p<0.0001) was observed in the UPS, while the chymotrypsin-like and trypsin-like activities were unchanged. The protein levels of the rate limiting ubiquitin E3-ligases MuRF-1 and MAFbx were up-regulated (p=0.005 and p=0.0156, respectively). Mechanistically silencing of TWIST1 using siRNA in primary rat cardiomyocytes led to a down-regulation of the miR-199/214 cluster and to a subsequent up-regulation of Ube2i.


The TWIST1/miR-199/214 axis is down-regulated in dilated cardiomyopathy, which is likely to play a role in the increased activity of the UPS. This may contribute to the loss of cardiac mass during dilatation of the heart.


Cardiomyopathy; DCM; TWIST1; Ubiquitin proteasome system; microRNA

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center