Format

Send to

Choose Destination
See comment in PubMed Commons below
PLoS Comput Biol. 2013;9(1):e1002872. doi: 10.1371/journal.pcbi.1002872. Epub 2013 Jan 24.

Dynamic finite size effects in spiking neural networks.

Author information

1
Laboratory of Biological Modeling, NIDDK, NIH, Bethesda, Maryland, United States of America. mabuice@mail.clm.utexas.edu

Abstract

We investigate the dynamics of a deterministic finite-sized network of synaptically coupled spiking neurons and present a formalism for computing the network statistics in a perturbative expansion. The small parameter for the expansion is the inverse number of neurons in the network. The network dynamics are fully characterized by a neuron population density that obeys a conservation law analogous to the Klimontovich equation in the kinetic theory of plasmas. The Klimontovich equation does not possess well-behaved solutions but can be recast in terms of a coupled system of well-behaved moment equations, known as a moment hierarchy. The moment hierarchy is impossible to solve but in the mean field limit of an infinite number of neurons, it reduces to a single well-behaved conservation law for the mean neuron density. For a large but finite system, the moment hierarchy can be truncated perturbatively with the inverse system size as a small parameter but the resulting set of reduced moment equations that are still very difficult to solve. However, the entire moment hierarchy can also be re-expressed in terms of a functional probability distribution of the neuron density. The moments can then be computed perturbatively using methods from statistical field theory. Here we derive the complete mean field theory and the lowest order second moment corrections for physiologically relevant quantities. Although we focus on finite-size corrections, our method can be used to compute perturbative expansions in any parameter.

PMID:
23359258
PMCID:
PMC3554590
DOI:
10.1371/journal.pcbi.1002872
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Support Center