Send to

Choose Destination
See comment in PubMed Commons below
Infect Immun. 2013 Apr;81(4):1172-85. doi: 10.1128/IAI.01403-12. Epub 2013 Jan 28.

Pathogenicity of Yersinia pestis synthesis of 1-dephosphorylated lipid A.

Author information

Center for Infectious Disease and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA.


Synthesis of Escherichia coli LpxL, which transfers a secondary laurate chain to the 2' position of lipid A, in Yersinia pestis produced bisphosphoryl hexa-acylated lipid A at 37°C, leading to significant attenuation of virulence. Our previous observations also indicated that strain χ10015(pCD1Ap) (ΔlpxP32::P(lpxL) lpxL) stimulated a strong inflammatory reaction but sickened mice before recovery and retained virulence via intranasal (i.n.) infection. The development of live, attenuated Y. pestis vaccines may be facilitated by detoxification of its lipopolysaccharide (LPS). Heterologous expression of the lipid A 1-phosphatase, LpxE, from Francisella tularensis in Y. pestis yields predominantly 1-dephosphorylated lipid A, as confirmed by mass spectrometry. Results indicated that expression of LpxE on top of LpxL provided no significant reduction in virulence of Y. pestis in mice when it was administered i.n. but actually reduced the 50% lethal dose (LD(50)) by 3 orders of magnitude when the strain was administered subcutaneously (s.c.). Additionally, LpxE synthesis in wild-type Y. pestis KIM6+(pCD1Ap) led to slight attenuation by s.c. inoculation but no virulence change by i.n. inoculation in mice. In contrast to Salmonella enterica, expression of LpxE does not attenuate the virulence of Y. pestis.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center