Send to

Choose Destination
See comment in PubMed Commons below
Clin Radiol. 2013 May;68(5):433-48. doi: 10.1016/j.crad.2012.05.018. Epub 2013 Jan 23.

Post-processing applications in thoracic computed tomography.

Author information

  • 1Department of Radiology, St George's Hospital, Tooting, London, UK.


The rapid evolution of multidetector computed tomography (MDCT) and the introduction of dual-energy CT (DECT) have been paralleled by an unprecedented advancement in post-processing techniques. This has provided complementary methods of two- and three-dimensional visualization of the airways and lung parenchyma, many of which are easily available and not too time-consuming. In addition, advanced imaging has paved the way for methods of quantification of disease that may have a role to play in monitoring chronic obstructive pulmonary disease (COPD) and interstitial lung disease. Computer-aided detection also continues to be explored in lung cancer and pulmonary embolism detection. However, many of these techniques have not yet found widespread adoption in clinical practice. In this article, we review the imaging techniques (used in both single-energy and DECT) that can benefit from post-processing, describe the various post-processing tools available, and consider their clinical application with specific reference to COPD, diffuse lung disease, lung cancer, and pulmonary embolism.

Copyright © 2012 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk