Send to

Choose Destination
J Neurochem. 2013 May;125(3):386-98. doi: 10.1111/jnc.12168. Epub 2013 Feb 24.

A small peptide mimetic of brain-derived neurotrophic factor promotes peripheral myelination.

Author information

Department of Anatomy and Neuroscience, The University of Melbourne, Victoria, Australia.


The expression of the neurotrophins and their receptors is essential for peripheral nervous system development and myelination. We have previously demonstrated that brain-derived neurotrophic factor (BDNF) exerts contrasting influences upon Schwann cell myelination in vitro - promoting myelination via neuronally expressed p75NTR, but inhibiting myelination via neuronally expressed TrkB. We have generated a small peptide called cyclo-dPAKKR that structurally mimics the region of BDNF that binds p75NTR. Here, we have investigated whether utilizing cyclo-dPAKKR to selectively target p75NTR is an approach that could exert a unified promyelinating response. Like BDNF, cyclo-dPAKKR promoted myelination of nerve growth factor-dependent neurons in vitro, an effect dependent on the neuronal expression of p75NTR. Importantly, cyclo-dPAKKR also significantly promoted the myelination of tropomyosin-related kinase receptor B-expressing neurons in vitro, whereas BDNF exerted a significant inhibitory effect. This indicated that while BDNF exerted a contrasting influence upon the myelination of distinct subsets of dorsal root ganglion (DRG) neurons in vitro, cyclo-dPAKKR uniformly promoted their myelination. Local injection of cyclo-dPAKKR adjacent to the developing sciatic nerve in vivo significantly enhanced myelin protein expression and significantly increased the number of myelinated axons. These results demonstrate that cyclo-dPAKKR promotes peripheral myelination in vitro and in vivo, suggesting it is a strategy worthy of further investigation for the treatment of peripheral demyelinating diseases.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center