Format

Send to

Choose Destination
See comment in PubMed Commons below
J Phys Chem A. 2013 Feb 21;117(7):1420-7. doi: 10.1021/jp308406r. Epub 2013 Feb 8.

Analysis of low-lying gerade Rydberg states of acetylene using two-photon resonance fluorescence excitation spectroscopy.

Author information

  • 1Gunma National College of Technology, Maebashi 371-8530, Japan. ktsuji@nat.gunma-ct.ac.jp

Abstract

The np gerade Rydberg states of acetylene were analyzed using two-photon resonance fluorescence excitation spectroscopy in the 72,000-93,000 cm(-1) energy region. The npπ(1)Σ(g)(+) and npπ(1)Δ(g) Rydberg series (n = 3-5) were identified in the fluorescence excitation spectrum measured by monitoring the C(2) d(3)Π(g)-a(3)Π(u) Swan system. Some vibronic bands were assigned to the npπ(1)Δ(g)-X̃(1)Σ(g)(+) transition on the basis of rotational analysis. The 5pσ(1)Π(g) state was observed, which is the first such observation in an npσ(1)Π(g) series. Rotational analysis of the 5pσ(1)Π(g)-X̃(1)Σ(g)(+) transition showed e/f-symmetry dependent predissociation of acetylene in the 5pσ(1)Π(g) state. The 0(0)(0) band of the deuterated acetylene (C(2)D(2)) 4pπ(1)Σ(g)(+)-X̃(1)Σ(g)(+) transition exhibits an atypical structure, which was satisfactorily reproduced by a simple model of quantum interference between the discrete and quasi-continuum states. The predissociative lifetimes of the npπgerade Rydberg states were estimated from the spectral profiles. The predissociation mechanism of acetylene in the Rydberg states is discussed.

PMID:
23350665
DOI:
10.1021/jp308406r
[PubMed]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center