Format

Send to

Choose Destination
Biol Pharm Bull. 2013;36(4):522-8. Epub 2013 Jan 24.

Activation of AMP-activated protein kinase by a plant-derived dihydroisosteviol in human intestinal epithelial cell.

Author information

1
Department of Physiology, Faculty of Science, Mahidol University, Rama 6 Road, Rajathevi, Bangkok 10400, Thailand. chatchai.mua@mahidol.ac.th

Abstract

Our previous study has shown that dihydroisosteviol (DHIS), a derivative of stevioside isolated from Stevia rebaudiana (Bertoni), inhibits cystic fibrosis transmembrane conductance regulator (CFTR)-mediated transepithelial chloride secretion across monolayers of human intestinal epithelial (T84) cells and prevents cholera toxin-induced intestinal fluid secretion in mouse closed loop models. In this study, we aimed to investigate a mechanism by which DHIS inhibits CFTR activity. Apical chloride current measurements in Fisher rat thyroid cells stably transfected with wild-type human CFTR (FRT-CFTR cells) and T84 cells were used to investigate mechanism of CFTR inhibition by DHIS. In addition, effect of DHIS on AMP-activated protein kinase (AMPK) activation was investigated using Western blot analysis. Surprisingly, it was found that DHIS failed to inhibit CFTR-mediated apical chloride current in FRT-CFTR cells. In contrast, DHIS effectively inhibited CFTR-mediated apical chloride current induced by a cell permeable cAMP analog CPT-cAMP and a direct CFTR activator genistein in T84 cell monolayers. Interestingly, this inhibitory effect of DHIS on CFTR was significantly (p<0.05) reduced by pretreatment with compound C, an AMPK inhibitor. AICAR, a known AMPK activator, was able to inhibit CFTR activity in both FRT-CFTR and T84 cells. Western blot analysis showed that DHIS induced AMPK activation in T84 cells, but not in FRT-CFTR cells. Our results indicate that DHIS inhibits CFTR-mediated chloride secretion in T84 cells, in part, by activation of AMPK activity. DHIS therefore represents a novel candidate of AMPK activators.

PMID:
23343619
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for J-STAGE, Japan Science and Technology Information Aggregator, Electronic
Loading ...
Support Center