Send to

Choose Destination
See comment in PubMed Commons below
Biochemistry. 2013 Feb 26;52(8):1477-89. doi: 10.1021/bi3012687. Epub 2013 Feb 12.

Interaction of human synovial phospholipase A2 with mixed lipid bilayers: a coarse-grain and all-atom molecular dynamics simulation study.

Author information

Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.


Human secreted phospholipase A2s have been shown to promote inflammation in mammals by catalyzing the first step of the arachidonic acid pathway by breaking down phospholipids, producing fatty acids, including arachidonic acid. They bind to the membrane water interface to access their phospholipid substrates from the membrane. Their binding modes on membrane surfaces are regulated by diverse factors, including membrane charge, fluidity, and heterogeneity. The influence of these factors on the binding modes of the enzymes is not well understood. Here we have studied several human synovial phospholipase A2 (hs-PLA2)/mixed bilayer systems through a combined coarse-grain and all-atom molecular dynamics simulation. It was found that hydrophobic residues Leu2, Val3, Ala18, Leu19, Phe23, Gly30, and Phe63 that form the edge of the entrance of the hydrophobic binding pocket in hs-PLA2 tend to penetrate into the hydrophobic area of lipid bilayers, and more than half of the total amino acid residues make contact with the lipid headgroups. Each enzyme molecule forms 19-38 hydrogen bonds with the bilayer to which it binds, most of which are with the phosphate groups. Analysis of the root-mean-square deviation (rmsd) shows that residues Val30-Thr40, Tyr66-Gln80, and Lys107-Arg118 have relatively large rmsds during all-atom molecular dynamics simulations, in accordance with the observation of an enlarged entrance region of the hydrophobic binding pocket. The amino acid sequences forming the entrance of the binding pocket prefer to interact with lipid molecules that are more fluid or negatively charged, and the opening of the binding pocket would be larger when the lipid components are more fluid.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center