Format

Send to

Choose Destination
PLoS One. 2013;8(1):e54001. doi: 10.1371/journal.pone.0054001. Epub 2013 Jan 16.

Blocking the class I histone deacetylase ameliorates renal fibrosis and inhibits renal fibroblast activation via modulating TGF-beta and EGFR signaling.

Author information

1
Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.

Abstract

BACKGROUND:

Histone deacetylase (HDAC) inhibitors are promising anti-fibrosis drugs; however, nonselective inhibition of class I and class II HDACs does not allow a detailed elucidation of the individual HDAC functions in renal fibrosis. In this study, we investigated the effect of MS-275, a selective class I HDAC inhibitor, on the development of renal fibrosis in a murine model of unilateral ureteral obstruction (UUO) and activation of cultured renal interstitial fibroblasts.

METHODS/FINDINGS:

The UUO model was established by ligation of the left ureter and the contralateral kidney was used as a control. At seven days after UUO injury, kidney developed fibrosis as indicated by deposition of collagen fibrils and increased expression of collagen I, fibronectin and alpha-smooth muscle actin (alpha-SMA). Administration of MS-275 inhibited all these fibrotic responses and suppressed UUO-induced production of transforming growth factor-beta1 (TGF-beta), increased expression of TGF-beta receptor I, and phosphorylation of Smad-3. MS-275 was also effective in suppressing phosphorylation and expression of epidermal growth factor receptor (EGFR) and its downstream signaling molecule, signal transducer and activator of transcription-3. Moreover, class I HDAC inhibition reduced the number of renal tubular cells arrested in the G2/M phase of the cell cycle, a cellular event associated with TGF-beta1overproduction. In cultured renal interstitial fibroblasts, MS-275 treatment inhibited TGF-beta induced phosphorylation of Smad-3, differentiation of renal fibroblasts to myofibroblasts and proliferation of myofibroblasts.

CONCLUSIONS AND SIGNIFICANCE:

These results demonstrate that class I HDACs are critically involved in renal fibrogenesis and renal fibroblast activation through modulating TGF-beta and EGFR signaling and suggest that blockade of class I HDAC may be a useful treatment for renal fibrosis.

PMID:
23342059
PMCID:
PMC3546966
DOI:
10.1371/journal.pone.0054001
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms

Substances

Grant support

Supplemental Content

Full text links

Icon for Public Library of Science Icon for PubMed Central
Loading ...
Support Center