Format

Send to

Choose Destination
J Proteome Res. 2013 Mar 1;12(3):1245-53. doi: 10.1021/pr300909v. Epub 2013 Feb 11.

Urinary phenotyping indicates weight loss-independent metabolic effects of Roux-en-Y gastric bypass in mice.

Author information

1
Department of General- and Visceral, Vascular- and Pediatric Surgery, University Hospital of Wuerzburg, Germany.

Abstract

Patients with a body mass index (BMI) above 35 kg/m(2) with metabolic diseases benefit from Roux-en-Y gastric bypass (RYGB) independently of their final BMI and the amount of body weight lost. However, the weight loss independent metabolic effects induced by RYGB remain less well understood. To elucidate metabolic changes after RYGB, (1)H NMR spectroscopy-based urine metabolic profiles from RYGB (n = 7), ad libitum-fed sham (AL, n = 5), and body-weight-matched sham (BWM, n = 5) operated mice were obtained. Gut morphometry and fecal energy content were analyzed. Food intake and body weight of RYGB mice were significantly reduced (p = 0.001) compared to sham-AL. There was a strong tendency that BWM-shams required less food to maintain the same body weight as RYGB mice (p = 0.05). No differences were found in fecal energy content between the groups, excluding malabsorption in RYGB animals. Unlike RYGB-operated rats, gut hypertrophy was not observed in RYGB-operated mice. Urinary tricarboxylic acid cycle intermediates were higher in the sham groups, suggesting altered mitochondrial metabolism after RYGB surgery. Higher urinary levels of trimethylamine, hippurate and trigonelline in RYGB mice indicate that the RYGB operation caused microbial disturbance. Taken together, we demonstrate for the first time that there are RYGB specific metabolic effects, which are independent of food intake and body weight loss. Increased utilization of TCA cycle intermediates and altered gut microbial-host co-metabolites might indicate increased energy expenditure and microbial changes in the gut, respectively.

PMID:
23336719
DOI:
10.1021/pr300909v
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center