Format

Send to

Choose Destination
See comment in PubMed Commons below
J Am Chem Soc. 2013 Feb 13;135(6):2080-3. doi: 10.1021/ja311645d. Epub 2013 Feb 1.

Redox mediator effect on water oxidation in a ruthenium-based chromophore-catalyst assembly.

Author information

1
Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA.

Abstract

The synthesis, characterization, and redox properties are described for a new ruthenium-based chromophore-catalyst assembly, [(bpy)(2)Ru(4-Mebpy-4'-bimpy)Ru(tpy)(OH(2))](4+) (1, [Ru(a)(II)-Ru(b)(II)-OH(2)](4+); bpy = 2,2'-bipyridine; 4-Mebpy-4'-bimpy = 4-(methylbipyridin-4'-yl)-N-benzimid-N'-pyridine; tpy = 2,2':6',2"-terpyridine), as its chloride salt. The assembly incorporates both a visible light absorber and a catalyst for water oxidation. With added ceric ammonium nitrate (Ce(IV), or CAN), both 1 and 2, [Ru(tpy)(Mebim-py)(OH(2))](2+) (Mebim-py = 2-pyridyl-N-methylbenzimidazole), catalyze water oxidation. Time-dependent UV/vis spectral monitoring following addition of 30 equiv of Ce(IV) reveals that the rate of Ce(IV) consumption is first order both in Ce(IV) and in an oxidized form of the assembly. The rate-limiting step appears to arise from slow oxidation of this intermediate followed by rapid release of O(2). This is similar to isolated catalyst 2, with redox potentials comparable to the [-Ru(b)-OH(2)](2+) site in 1, but 1 is more reactive than 2 by a factor of 8 due to a redox mediator effect.

PMID:
23336109
DOI:
10.1021/ja311645d
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center