Format

Send to

Choose Destination
See comment in PubMed Commons below
Appl Environ Microbiol. 2013 Apr;79(7):2137-47. doi: 10.1128/AEM.03204-12. Epub 2013 Jan 18.

Thaumarchaeotal signature gene distribution in sediments of the northern South China Sea: an indicator of the metabolic intersection of the marine carbon, nitrogen, and phosphorus cycles?

Author information

1
State Key Laboratory of Heavy Oil Processing, Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, China. DangHY20042000@yahoo.com.cn

Abstract

Thaumarchaeota are abundant and active in marine waters, where they contribute to aerobic ammonia oxidation and light-independent carbon fixation. The ecological function of thaumarchaeota in marine sediments, however, has rarely been investigated, even though marine sediments constitute the majority of the Earth's surface. Thaumarchaeota in the upper layer of sediments may contribute significantly to the reservoir of nitrogen oxides in ocean waters and thus to productivity, including the assimilation of carbon. We tested this hypothesis in the northern South China Sea (nSCS), a section of a large oligotrophic marginal sea with limited influx of nutrients, including nitrogen, by investigating the diversity, abundance, community structure, and spatial distribution of thaumarchaeotal signatures in surface sediments. Quantitative real-time PCR using primers designed to detect 16S rRNA and amoA genes in sediment community DNA revealed a significantly higher abundance of pertinent thaumarchaeotal than betaproteobacterial genes. This finding correlates with high levels of hcd genes, a signature of thaumarchaeotal autotrophic carbon fixation. Thaumarchaeol, a signature lipid biomarker for thaumarchaeota, constituted the majority of archaeal lipids in marine sediments. Sediment temperature and organic P and silt contents were identified as key environmental factors shaping the community structure and distribution of the monitored thaumarchaeotal amoA genes. When the pore water PO4(3-) concentration was controlled for via partial-correlation analysis, thaumarchaeotal amoA gene abundance significantly correlated with the sediment pore water NO2(-) concentration, suggesting that the amoA-bearing thaumarchaeota contribute to nitrite production. Statistical analyses also suggest that thaumarchaeotal metabolism could serve as a pivotal intersection of the carbon, nitrogen, and phosphorus cycles in marine sediments.

PMID:
23335759
PMCID:
PMC3623242
DOI:
10.1128/AEM.03204-12
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Secondary source ID

Publication types

MeSH terms

Substances

Secondary source ID

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center