Format

Send to

Choose Destination
See comment in PubMed Commons below
Cytoskeleton (Hoboken). 2013 Mar;70(3):148-60. doi: 10.1002/cm.21096. Epub 2013 Jan 17.

Partial depletion of gamma-actin suppresses microtubule dynamics.

Author information

1
Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW, Randwick, NSW, Australia.

Abstract

Actin and microtubule interactions are important for many cellular events, however these interactions are poorly described. Alterations in γ-actin are associated with diseases such as hearing loss and cancer. Functional investigations demonstrated that partial depletion of γ-actin affects cell polarity and induces resistance to microtubule-targeted agents. To determine whether γ-actin alterations directly affect microtubule dynamics, microtubule dynamic instability was analyzed in living cells following partial siRNA depletion of γ-actin. Partial depletion of γ-actin suppresses interphase microtubule dynamics by 17.5% due to a decrease in microtubule shortening rates and an increase in microtubule attenuation. γ-Actin partial depletion also increased distance-based microtubule catastrophe and rescue frequencies. In addition, knockdown of γ-actin delayed mitotic progression, partially blocking metaphase-anaphase transition and inhibiting cell proliferation. Interestingly, in the presence of paclitaxel, interphase microtubule dynamics were further suppressed by 24.4% in the γ-actin knockdown cells, which is comparable to 28.8% suppression observed in the control siRNA treated cells. Paclitaxel blocked metaphase-anaphase transition in both the γ-actin knockdown cells and the control siRNA cells. However, the extent of mitotic arrest was much higher in the control cells (28.4%), compared to the γ-actin depleted cells (8.5%). Therefore, suppression of microtubule dynamics by partial depletion of γ-actin is associated with marked delays in metaphase-anaphase transition and not mitotic arrest. This is the first demonstration that γ-actin can modulate microtubule dynamics by reducing the microtubule shortening rate, promoting paused/attenuated microtubules, and increasing transition frequencies suggesting a mechanistic link between γ-actin and microtubules.

PMID:
23335583
PMCID:
PMC3613743
DOI:
10.1002/cm.21096
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Support Center