Format

Send to

Choose Destination
See comment in PubMed Commons below
Neurosci Lett. 2013 Feb 22;535:67-72. doi: 10.1016/j.neulet.2012.12.057. Epub 2013 Jan 14.

Impairment of spinal motor neurons in spinocerebellar ataxia type 1-knock-in mice.

Author information

1
Department of Orthopedic surgery, University of Gunma Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan.

Abstract

Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant neurodegenerative disorder caused by the expansion of polyglutamine repeats in the Ataxin-1 protein. An accumulating body of cerebellar, histological and behavioral analyses has proven that SCA1-knock-in mice (in which the endogenous Atxn1 gene is replaced with mutant Atxn1 that has abnormally expanded 154 CAG repeats) work as a good tool, which resembles the central nervous system pathology of SCA1 patients. However, the peripheral nervous system pathology of the model mice has not been studied despite the fact that the clinical manifestation is also characterized by peripheral involvement. We show here that spinal motor neurons are degenerated in SCA1-knock-in mice. Histologically, some spinal motor neurons of the SCA1-knock-in mice have polyglutamine aggregates in their nuclei and also thinner and demyelinated axons. Electrophysiological examinations of the mice showed slower nerve conduction velocities in spinal motor neurons and lower amplitudes of muscle action potential, compared to wild-type mice. Consistently, the mice displayed decrease in rearing number and total rearing time. These results suggest that the knock-in mice serve as a definite model that reproduces peripheral involvement and are therefore useful for research on the peripheral nervous system pathology in SCA1 patients.

PMID:
23328439
DOI:
10.1016/j.neulet.2012.12.057
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center