Format

Send to

Choose Destination
See comment in PubMed Commons below
J Tissue Eng. 2012;3(1):2041731412467998. doi: 10.1177/2041731412467998. Epub 2012 Dec 2.

Osteogenic differentiation of human dental pulp stem cells on β-tricalcium phosphate/poly (l-lactic acid/caprolactone) three-dimensional scaffolds.

Author information

1
Adult Stem Cells Group, Institute of Biomedical Technology, University of Tampere, Tampere, Finland ; BioMediTech, Tampere, Finland ; Science Centre, Tampere University Hospital, Tampere, Finland.

Abstract

Functional tissue engineering for bone augmentation requires the appropriate combination of biomaterials, mesenchymal stem cells, and specific differentiation factors. Therefore, we investigated the morphology, attachment, viability, and proliferation of human dental pulp stem cells cultured in xeno-free conditions in human serum medium seeded on β-tricalcium phosphate/poly(l-lactic acid/caprolactone) three-dimensional biomaterial scaffold. Additionally, osteogenic inducers dexamethasone and vitamin D(3) were compared to achieve osteogenic differentiation. Dental pulp stem cells cultured in human serum medium maintained their morphology; furthermore, cells attached, remained viable, and increased in cell number within the scaffold. Alkaline phosphatase staining showed the osteogenic potential of dental pulp stem cells under the influence of osteogenic medium containing vitamin D(3) or dexamethasone within the scaffolds. Maintenance of dental pulp stem cells for 14 days in osteogenic medium containing vitamin D(3) resulted in significant increase in osteogenic markers as shown at mRNA level in comparison to osteogenic medium containing dexamethasone. The results of this study show that osteogenic medium containing vitamin D(3) osteo-induced dental pulp stem cells cultured in human serum medium within β-tricalcium phosphate/poly(l-lactic acid/caprolactone) three-dimensional biomaterial, which could be directly translated clinically.

KEYWORDS:

dental pulp stem cells; human serum; osteogenic differentiation; vitamin D3; β-tricalcium phosphate/poly(l-lactic acid/caprolactone)

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for PubMed Central
    Loading ...
    Support Center