Format

Send to

Choose Destination
Am J Pathol. 2013 Mar;182(3):975-91. doi: 10.1016/j.ajpath.2012.11.025. Epub 2013 Jan 9.

Conditionally ablated Pten in prostate basal cells promotes basal-to-luminal differentiation and causes invasive prostate cancer in mice.

Author information

1
Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan.

Abstract

Prostate glands comprise two major epithelial cell types: luminal and basal. Luminal cells have long been considered the cellular origin of prostate cancer (CaP). However, recent evidence from a prostate regeneration assay suggests that prostate basal cells can also give rise to CaP. Here, we characterize Pten-deficient prostate lesions arising from keratin 5-expressing basal cells in a temporally controlled system in mice. Pten-deficient prostate lesions arising from basal cells exhibited luminal phenotypes with higher invasiveness, and the cell fate of Pten-deficient basal cells was traced to neoplastic luminal cells. After temporally ablating Pten in keratin 8-expressing luminal cells, luminal-derived Pten-deficient prostate tumors exhibited slower disease progression, compared with basal-derived tumors, within 13 weeks after Pten ablation. Cellular proliferation was significantly increased in basal-derived versus luminal-derived Pten-deficient prostate lesions. Increased tumor invasion into the smooth muscle layer and aberrantly regulated aggressive signatures (Smad4 and Spp1) were identified exclusively in basal-derived Pten-deficient lesions. Interestingly, p63-expressing cells, which represent basal stem and progenitor cells of basal-derived Pten-deficient prostate lesions, were significantly increased, relative to cells of the luminal-derived prostate lesion. Furthermore, castration did not suppress cellular proliferation of either basal-derived or luminal-derived Pten-deficient prostate tumors. Taken together, our data suggest that, although prostate malignancy can originate from both basal and luminal populations, these two populations differ in aggressive potential.

PMID:
23313138
DOI:
10.1016/j.ajpath.2012.11.025
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center