Send to

Choose Destination
See comment in PubMed Commons below
Microcirculation. 2013 May;20(4):330-6. doi: 10.1111/micc.12042.

What role for store-operated Ca²⁺ entry in muscle?

Author information

Nanobioscience Constellation, College of Nanoscale Science and Engineering-CNSE, University at Albany, State University of New York, Albany, New York, USA.


Store-operated Ca²⁺ entry (SOCE) is a receptor-regulated Ca²⁺ entry pathway that is both ubiquitous and evolutionarily conserved. SOCE is activated by depletion of intracellular Ca²⁺ stores through receptor-mediated production of inositol 1,4,5-trisphosphate (IP₃). The depletion of endoplasmic reticulum (ER) Ca²⁺ is sensed by stromal interaction molecule 1 (STIM1). On store depletion, STIM1 aggregates and moves to areas where the ER comes close to the plasma membrane (PM; within 25 nm) to interact with Orai1 channels and activate Ca²⁺ entry. Ca²⁺ entry through store-operated Ca²⁺ (SOC) channels, originally thought to mediate the replenishment of Ca²⁺ stores, participate in active downstream signaling by coupling to the activation of enzymes and transcription factors that control a wide variety of long-term cell functions such as proliferation, growth, and migration. SOCE has also been proposed to contribute to short-term cellular responses such as muscle contractility. While there are significant STIM1/Orai1 protein levels and SOCE activity in adult skeletal muscle, the precise role of SOCE in skeletal muscle contractility is not clear. The dependence on SOCE during cardiac and smooth muscle contractility is even less certain. Here, we will hypothesize on the contribution of SOCE in muscle and its potential role in contractility and signaling.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Support Center