Format

Send to

Choose Destination
See comment in PubMed Commons below
Plant Cell Physiol. 2013 Feb;54(2):270-81. doi: 10.1093/pcp/pcs181. Epub 2013 Jan 9.

FT-like NFT1 gene may play a role in flower transition induced by heat accumulation in Narcissus tazetta var. chinensis.

Author information

1
School of Life Science, East China Normal University, 500 Dongchuan Rd., Shanghai, PR China.

Abstract

The low-temperature flowering-response pathway, used as an inductive stimulus to induce flowering in plant species from temperate regions in response to cold temperature, has been extensively studied. However, limited information is available on the flower transition of several bulbous species, which require high temperature for flower differentiation. Narcissus tazetta var. chinensis (Chinese narcissus) exhibits a 2 year juvenile phase, and flower initiation within its bulbs occurs during summer dormancy. The genetic factors that control flower initiation are mostly unknown in Chinese narcissus. In the present study, we found that a high storage temperature is necessary for flower initiation. Flower initiation was advanced in bulbs previously exposed to extended high temperature. The heat accumulation required for flower transition was also determined. High temperature treatment rescued the low flower percentage resulting from short storage duration under natural conditions. In addition, extended high storage temperature was found to increase the flowering percentage of 2-year-old plants, which can be applied in breeding. Narcissus FLOWERING LOCUS T1 (NFT1), a homolog of the Arabidopsis thaliana gene FLOWERING LOCUS T, was isolated in this study. NFT1 transcripts were abundant during flower initiation in mature bulbs and were up-regulated by high temperature. The genetic experiments, coupled with an expression profiling assay, suggest that NFT1 possibly takes part in flower transition control in response to high temperature.

PMID:
23303875
DOI:
10.1093/pcp/pcs181
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems
    Loading ...
    Support Center