Format

Send to

Choose Destination
See comment in PubMed Commons below
PLoS One. 2012;7(12):e53395. doi: 10.1371/journal.pone.0053395. Epub 2012 Dec 31.

SRC-2 coactivator deficiency decreases functional reserve in response to pressure overload of mouse heart.

Author information

  • 1Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America.

Abstract

A major component of the cardiac stress response is the simultaneous activation of several gene regulatory networks. Interestingly, the transcriptional regulator steroid receptor coactivator-2, SRC-2 is often decreased during cardiac failure in humans. We postulated that SRC-2 suppression plays a mechanistic role in the stress response and that SRC-2 activity is an important regulator of the adult heart gene expression profile. Genome-wide microarray analysis, confirmed with targeted gene expression analyses revealed that genetic ablation of SRC-2 activates the "fetal gene program" in adult mice as manifested by shifts in expression of a) metabolic and b) sarcomeric genes, as well as associated modulating transcription factors. While these gene expression changes were not accompanied by changes in left ventricular weight or cardiac function, imposition of transverse aortic constriction (TAC) predisposed SRC-2 knockout (KO) mice to stress-induced cardiac dysfunction. In addition, SRC-2 KO mice lacked the normal ventricular hypertrophic response as indicated through heart weight, left ventricular wall thickness, and blunted molecular signaling known to activate hypertrophy. Our results indicate that SRC-2 is involved in maintenance of the steady-state adult heart transcriptional profile, with its ablation inducing transcriptional changes that mimic a stressed heart. These results further suggest that SRC-2 deletion interferes with the timing and integration needed to respond efficiently to stress through disruption of metabolic and sarcomeric gene expression and hypertrophic signaling, the three key stress responsive pathways.

PMID:
23300926
PMCID:
PMC3534027
DOI:
10.1371/journal.pone.0053395
[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Support Center