Format

Send to

Choose Destination
J Neurophysiol. 1990 Mar;63(3):570-91.

Binaural interaction in high-frequency neurons in inferior colliculus of the cat: effects of variations in sound pressure level on sensitivity to interaural intensity differences.

Author information

1
Department of Psychology, Monash University, Clayton, Victoria, Australia.

Abstract

1. Development of models of the manner in which interaural intensity differences (IIDs), the major binaural cue for the azimuthal location of high-frequency sounds, are coded by populations of neurons requires knowledge of the extent to which the IID sensitivity of individual neurons is invariant with changes in sound pressure level (SPL) and other stimulus parameters. To examine this tissue, recordings were obtained from a large sample (n = 458) of neurons with characteristic frequency (CF) greater than 3 kHz in the central nucleus of the inferior colliculus (ICC) of anesthetized cats. The sensitivity to IIDs and the effects of changes in SPL on this sensitivity were examined in neurons receiving excitatory contralateral input and inhibitory or mixed inhibitory/facilitatory ipsilateral input (EI neurons). 2. The form of an EI neuron's IID sensitivity and the effects of changes in SPL on that sensitivity were found to be determined in part by the characteristics of the neuron's rate-intensity function for monaural contralateral stimulation, and detailed rate-intensity functions were therefore obtained for 91 neurons. Many ICC neurons have nonmonotonic rate-intensity functions, the proportion so classified depending on the criterion of nonmonotonicity employed. 3. IID sensitivity functions for CF tonal stimuli were obtained at one or more intensities for 90 neurons, using a method of generating IIDs that kept the average binaural intensity (ABI) of the stimuli at the two ears constant. In the standard ABI range in which a function was obtained for each unit, the majority of EI neurons (72%) had monotonic (sigmoidal) or near-monotonic IID sensitivity functions. The remainder had nonmonotonic (peaked) IID sensitivity functions, which were attributable either to mixed inhibitory and facilitatory ipsilateral influences or to the fact that the effects of ipsilateral stimulation were superimposed on nonmonotonic effects of changes in intensity at the excitatory ear. 4. IID sensitivity was examined at two or more ABIs (3-5 in most cases) for 40 neurons classified as having monotonic or near-monotonic functions in the standard ABI range and for 7 neurons classified as nonmonotonic. For a small proportion of neurons with monotonic IID sensitivity functions, the form of the function was relatively invariant with changes in ABI. In those monotonic neurons in which the form of the IID sensitivity function varied with changes in ABI, the most common type of variation was that the position of the sloping portion of the function shifted systematically in the direction of larger IIDs favoring the ipsilateral ear as ABI increased.(ABSTRACT TRUNCATED AT 400 WORDS).

PMID:
2329362
DOI:
10.1152/jn.1990.63.3.570
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center