Send to

Choose Destination
See comment in PubMed Commons below
PLoS One. 2012;7(12):e52810. doi: 10.1371/journal.pone.0052810. Epub 2012 Dec 20.

CBP and p300 histone acetyltransferases contribute to homologous recombination by transcriptionally activating the BRCA1 and RAD51 genes.

Author information

Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan.


Histone acetylation at DNA double-strand break (DSB) sites by CBP and p300 histone acetyltransferases (HATs) is critical for the recruitment of DSB repair proteins to chromatin. Here, we show that CBP and p300 HATs also function in DSB repair by transcriptionally activating the BRCA1 and RAD51 genes, which are involved in homologous recombination (HR), a major DSB repair system. siRNA-mediated depletion of CBP and p300 impaired HR activity and downregulated BRCA1 and RAD51 at the protein and mRNA levels. Chromatin immunoprecipitation assays showed that CBP and p300 bind to the promoter regions of the BRCA1 and RAD51 genes, and that depletion of CBP and/or p300 reduces H3 and H4 acetylation and inhibits binding of the transcription factor E2F1 to these promoters. Depletion of CBP and p300 impaired DNA damage-induced phosphorylation and chromatin binding of the single-strand DNA-binding protein RPA following BRCA1-mediated DNA end resection. Consistent with this, subsequent phosphorylation of CHK1 and activation of the G2/M damage checkpoint were also impaired. These results indicate that the HATs CBP and p300 play multiple roles in the activation of the cellular response to DSBs.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Support Center