Format

Send to

Choose Destination
See comment in PubMed Commons below
PLoS One. 2012;7(12):e52250. doi: 10.1371/journal.pone.0052250. Epub 2012 Dec 21.

Palindromic nucleotide analysis in human T cell receptor rearrangements.

Author information

1
IBM Research Lab, New Delhi, India.

Abstract

Diversity of T cell receptor (TCR) genes is primarily generated by nucleotide insertions upon rearrangement from their germ line-encoded V, D and J segments. Nucleotide insertions at V-D and D-J junctions are random, but some small subsets of these insertions are exceptional, in that one to three base pairs inversely repeat the sequence of the germline DNA. These short complementary palindromic sequences are called P nucleotides. We apply the ImmunoSeq deep-sequencing assay to the third complementarity determining region (CDR3) of the β chain of T cell receptors, and use the resulting data to study P nucleotides in the repertoire of naïve and memory CD8(+) and CD4(+) T cells. We estimate P nucleotide distributions in a cross section of healthy adults and different T cell subtypes. We show that P nucleotide frequency in all T cell subtypes ranges from 1% to 2%, and that the distribution is highly biased with respect to the coding end of the gene segment. Classification of observed palindromic sequences into P nucleotides using a maximum conditional probability model shows that single base P nucleotides are very rare in VDJ recombination; P nucleotides are primarily two bases long. To explore the role of P nucleotides in thymic selection, we compare P nucleotides in productive and non-productive sequences of CD8(+) naïve T cells. The naïve CD8(+) T cell clones with P nucleotides are more highly expanded.

PMID:
23284955
PMCID:
PMC3528771
DOI:
10.1371/journal.pone.0052250
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Support Center