Format

Send to

Choose Destination
See comment in PubMed Commons below
PLoS One. 2012;7(12):e52108. doi: 10.1371/journal.pone.0052108. Epub 2012 Dec 20.

Assessing dispersal patterns of fish propagules from an effective mediterranean marine protected area.

Author information

1
Laboratory of Conservation and Management of Marine and Coastal Resources, Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, University of Salento-Consorzio Nazionale Interuniversitario per le Scienze del Mare, Lecce, Italy. difry@libero.it

Abstract

Successfully enforced marine protected areas (MPAs) have been widely demonstrated to allow, within their boundaries, the recovery of exploited species and beyond their boundaries, the spillover of juvenile and adult fish. Little evidence is available about the so-called 'recruitment subsidy', the augmented production of propagules (i.e. eggs and larvae) due to the increased abundance of large-sized spawners hosted within effective MPAs. Once emitted, propagules can be locally retained and/or exported elsewhere. Patterns of propagule retention and/or export from MPAs have been little investigated, especially in the Mediterranean. This study investigated the potential for propagule production and retention/export from a Mediterranean MPA (Torre Guaceto, SW Adriatic Sea) using the white sea bream, Diplodus sargus sargus, as a model species. A multidisciplinary approach was used combining 1) spatial distribution patterns of individuals (post-settlers and adults) assessed through visual census within Torre Guaceto MPA and in northern and southern unprotected areas, 2) Lagrangian simulations of dispersal based on an oceanographic model of the region and data on early life-history traits of the species (spawning date, pelagic larval duration) and 3) a preliminary genetic study using microsatellite loci. Results show that the MPA hosts higher densities of larger-sized spawners than outside areas, potentially guaranteeing higher propagule production. Model simulations and field observation suggest that larval retention within and long-distance dispersal across MPA boundaries allow the replenishment of the MPA and of exploited populations up to 100 km down-current (southward) from the MPA. This pattern partially agrees with the high genetic homogeneity found in the entire study area (no differences in genetic composition and diversity indices), suggesting a high gene flow. By contributing to a better understanding of propagule dispersal patterns, these findings provide crucial information for the design of MPAs and MPA networks effective to replenish fish stocks and enhance fisheries in unprotected areas.

PMID:
23284887
PMCID:
PMC3527352
DOI:
10.1371/journal.pone.0052108
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Support Center