Send to

Choose Destination
FEMS Microbiol Lett. 2013 Mar;340(1):11-8. doi: 10.1111/1574-6968.12066. Epub 2013 Jan 14.

Physiological properties of Streptococcus mutans UA159 biofilm-detached cells.

Author information

Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.


Biofilm detachment is a physiologically regulated process that facilitates the release of cells to colonize new sites and cause infections. Streptococcus mutans is one of the major inhabitants of cariogenic dental plaque biofilm. This study tested the hypothesis that S. mutans biofilm-detached cells exhibit distinct physiological properties compared with their sessile and planktonic counterparts. Biofilm-detached cells showed a longer generation time of 2.85 h compared with planktonic cells (2.06 h), but had higher phosphotransferase activity for sucrose and mannose (P < 0.05). Compared with planktonic cells, they showed higher chlorhexidine (CHX) resistance and fourfold more adherent (P < 0.05). Increased mutacin IV production in biofilm-detached cells was noted by a larger inhibition zone against Streptococcus gordonii (31.07 ± 1.62 mm vs. 25.2 ± 1.74 mm by planktonic cells; P < 0.05). The expressions of genes associated with biofilm formation (gtfC and comDE) and mutacin (nlmA) were higher compared with planktonic cells (P < 0.05). In many properties, biofilm-detached cells shared similarity with sessile cells except for a higher phosphotransferase activity for sucrose, glucose, and mannose, increased resistance to CHX, and elevated expression of gtfC-, comDE-, and acidurity-related gene aptD (P < 0.05). Based on data obtained, the S. mutans biofilm-detached cells are partially distinct in various physiological properties compared with their planktonic and sessile counterparts.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Silverchair Information Systems Icon for Wiley
Loading ...
Support Center