Format

Send to

Choose Destination
See comment in PubMed Commons below
Tree Physiol. 2013 Jan;33(1):18-25. doi: 10.1093/treephys/tps124. Epub 2012 Dec 28.

A modified ingrowth core method for measuring fine root production, mortality and decomposition in forests.

Author information

1
Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang City 110016, China.

Abstract

The ingrowth core method is widely used to assess fine root (diameter < 2 mm) production but has many inherent deficiencies. In this study, we modified this method by adopting mini ingrowth cores (diameter 1.2 cm), extending sample intervals to a growing season, and developing new models to quantify the concurrent production, mortality and decomposition, and applied them to a secondary Mongolian oak (Quercus mongolica Fischer ex Ledebour) forest. Annual fine root production, mortality and decomposition estimated by our method were 2.10 ± 0.23, 1.78 ± 0.20 and 0.85 ± 0.13 t ha(-1), respectively, and 33.3% of the production was decomposed in the growing season. The production estimate using our method was significantly higher than those using two long-term ingrowth core (sample interval >2 months) methods. However, it was significantly lower than that using the short-term ingrowth core (sample interval <2 months) method, presumably due to the lower root competition and less decomposition occurring in the short-term cores. The fine root estimates using our method in the growing season were generally higher than those using the forward and continuous inflow methods but lower than those using the backward method. Our method reduces the disturbances in roots and soil, minimizes the sampling frequency and improves the quantification of fine root decomposition during the sample intervals. These modifications overcome the limitations associated with the previous ingrowth core methods. Our method provides an improved alternative for estimating fine root production, mortality and decomposition.

PMID:
23274718
DOI:
10.1093/treephys/tps124
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems
    Loading ...
    Support Center