Format

Send to

Choose Destination
See comment in PubMed Commons below
Curr Biol. 2013 Feb 4;23(3):244-9. doi: 10.1016/j.cub.2012.12.007. Epub 2012 Dec 27.

Nanodomain coupling at an excitatory cortical synapse.

Author information

1
Carl-Ludwig Institute for Physiology, University of Leipzig, 04103 Leipzig, Germany. hartmut.schmidt@medizin.uni-leipzig.de

Abstract

The coupling distance between presynaptic Ca(2+) influx and the sensor for vesicular transmitter release determines speed and reliability of synaptic transmission. Nanodomain coupling (<100 nm) favors fidelity and is employed by synapses specialized for escape reflexes and by inhibitory synapses involved in synchronizing fast network oscillations. Cortical glutamatergic synapses seem to forgo the benefits of tight coupling, yet quantitative detail is lacking. The reduced transmission fidelity of loose coupling, however, raises the question whether it is indeed a general characteristic of cortical synapses. Here we analyzed excitatory parallel fiber to Purkinje cell synapses, major processing sites for sensory information and well suited for analysis because they typically harbor only a single active zone. We quantified the coupling distance by combining multiprobability fluctuation analyses, presynaptic Ca(2+) imaging, and reaction-diffusion simulations in wild-type and calretinin-deficient mice. We found a coupling distance of <30 nm at these synapses, much shorter than at any other glutamatergic cortical synapse investigated to date. Our results suggest that nanodomain coupling is a general characteristic of conventional cortical synapses involved in high-frequency transmission, allowing for dense gray matter packing and cost-effective neurotransmission.

PMID:
23273895
DOI:
10.1016/j.cub.2012.12.007
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center