Format

Send to

Choose Destination
See comment in PubMed Commons below
Nucleic Acids Res. 2013 Feb 1;41(3):1807-16. doi: 10.1093/nar/gks1282. Epub 2012 Dec 24.

A novel mechanism of eukaryotic translation initiation that is neither m7G-cap-, nor IRES-dependent.

Author information

1
Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow 119234, Russia. terenin@genebee.msu.ru

Abstract

Resistance of translation of some eukaryotic messenger RNAs (mRNAs) to inactivation of the cap-binding factor eIF4E under unfavorable conditions is well documented. To date, it is the mechanism of internal ribosome entry that is predominantly thought to underlay this stress tolerance. However, many cellular mRNAs that had been considered to contain internal ribosome entry sites (IRESs) failed to pass stringent control tests for internal initiation, thus raising the question of how they are translated under stress conditions. Here, we show that inserting an eIF4G-binding element from a virus IRES into 5'-UTRs of strongly cap-dependent mRNAs dramatically reduces their requirement for the 5'-terminal m(7)G-cap, though such cap-independent translation remains dependent on a vacant 5'-terminus of these mRNAs. Importantly, direct binding of eIF4G to the 5'-UTR of mRNA makes its translation resistant to eIF4F inactivation both in vitro and in vivo. These data may substantiate a new paradigm of translational control under stress to complement IRES-driven mechanism of translation.

PMID:
23268449
PMCID:
PMC3561988
DOI:
10.1093/nar/gks1282
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems Icon for PubMed Central
    Loading ...
    Support Center