Send to

Choose Destination
See comment in PubMed Commons below
J Immunol. 2013 Feb 1;190(3):1250-63. doi: 10.4049/jimmunol.1103060. Epub 2012 Dec 21.

Regulation of TLR2-mediated tolerance and cross-tolerance through IRAK4 modulation by miR-132 and miR-212.

Author information

Department of Oral Biology, University of Florida, Gainesville, FL 32610, USA.


Innate immune response is the first defense against pathogens via recognition by various conserved pattern recognition receptors, such as TLRs, to initiate a rapid and strong cytokine alarm. TLR signaling-mediated cytokine production must be properly regulated to prevent pathological conditions deriving from overproduction of cytokines. In this study, the role of specific microRNAs in TLR-signaling pathway was investigated to reveal the cross-interaction and -regulation in the MyD88 pathway. In peptidoglycan (PGN)/TLR2-stimulated THP-1 monocytes, PBMCs, and primary macrophages showed rapid and dramatic miR-132 and miR-212 (miR-132/-212) upregulation. This newly identified response appeared earlier in time than the characteristic miR-146a response in LPS-TLR4 stimulation. The rapid induction of miR-132/-212 was transcription factor CREB dependent, and the sustained expression of miR-132/-212 was responsible for inducing tolerance to subsequent PGN challenge. Cross-tolerance was observed by TLR5 ligand flagellin and heat-killed or live bacteria resulting from miR-132/-212 upregulation. Mechanistically, IRAK4 was identified and validated as a target of miR-132/-212 by luciferase reporter assay and seed-sequence mutagenesis of the reporter. Transfection of miR-132 or miR-212 alone mimicked PGN tolerance in monocytes, whereas transfected specific miRNA inhibitors tampered the tolerance effect. During bacterial infection, PGN-mediated TLR2 signaling induces miR-132/-212 to downregulate IRAK4, an early component in the MyD88-dependent pathway, whereas LPS/TLR4-induced miR-146a downregulates downstream components of the same MyD88-dependent pathway. The identification of miR-132/-212 and miR-146a together to prevent damaging consequences from the overproduction of proinflammatory cytokines by targeting a common signaling pathway is significant and will provide insights into future design and development of therapeutics.

[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms


Grant support

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center