Format

Send to

Choose Destination
Sci Total Environ. 2013 Feb 1;444:85-101. doi: 10.1016/j.scitotenv.2012.11.056. Epub 2012 Dec 21.

Footprints of air pollution and changing environment on the sustainability of built infrastructure.

Author information

1
Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences (FEPS), University of Surrey, Guildford GU2 7XH, UK. P.Kumar@surrey.ac.uk

Abstract

Over 150 research articles relating three multi-disciplinary topics (air pollution, climate change and civil engineering structures) are reviewed to examine the footprints of air pollution and changing environment on the sustainability of building and transport structures (referred as built infrastructure). The aim of this review is to synthesize the existing knowledge on this topic, highlight recent advances in our understanding and discuss research priorities. The article begins with the background information on sources and emission trends of global warming (CO(2), CH(4), N(2)O, CFCs, SF(6)) and corrosive (SO(2), O(3), NO(X)) gases and their role in deterioration of building materials (e.g. steel, stone, concrete, brick and wood) exposed in outdoor environments. Further section covers the impacts of climate- and pollution-derived chemical pathways, generally represented by dose-response functions (DRFs), and changing environmental conditions on built infrastructure. The article concludes with the discussions on the topic areas covered and research challenges. A comprehensive inventory of DRFs is compiled. The case study carried out for analysing the inter-comparability of various DRFs on four different materials (carbon steel, limestone, zinc and copper) produced comparable results. Results of another case study revealed that future projected changes in temperature and/or relatively humidity are expected to have a modest effect on the material deterioration rate whereas changes in precipitation were found to show a more dominant impact. Evidences suggest that both changing and extreme environmental conditions are expected to affect the integrity of built infrastructure both in terms of direct structural damage and indirect losses of transport network functionality. Unlike stone and metals, substantially limited information is available on the deterioration of brick, concrete and wooden structures. Further research is warranted to develop more robust and theoretical DRFs for generalising their application, accurately mapping corrosion losses in an area, and costing risk of corrosion damage.

PMID:
23262326
DOI:
10.1016/j.scitotenv.2012.11.056
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center