Format

Send to

Choose Destination
Nature. 2013 Jan 31;493(7434):674-8. doi: 10.1038/nature11729. Epub 2012 Dec 19.

NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice.

Author information

1
Clinical Neuroscience Unit, Department of Neurology, University of Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany. michael.Heneka@ukb.uni-bonn.de

Abstract

Alzheimer's disease is the world's most common dementing illness. Deposition of amyloid-β peptide drives cerebral neuroinflammation by activating microglia. Indeed, amyloid-β activation of the NLRP3 inflammasome in microglia is fundamental for interleukin-1β maturation and subsequent inflammatory events. However, it remains unknown whether NLRP3 activation contributes to Alzheimer's disease in vivo. Here we demonstrate strongly enhanced active caspase-1 expression in human mild cognitive impairment and brains with Alzheimer's disease, suggesting a role for the inflammasome in this neurodegenerative disease. Nlrp3(-/-) or Casp1(-/-) mice carrying mutations associated with familial Alzheimer's disease were largely protected from loss of spatial memory and other sequelae associated with Alzheimer's disease, and demonstrated reduced brain caspase-1 and interleukin-1β activation as well as enhanced amyloid-β clearance. Furthermore, NLRP3 inflammasome deficiency skewed microglial cells to an M2 phenotype and resulted in the decreased deposition of amyloid-β in the APP/PS1 model of Alzheimer's disease. These results show an important role for the NLRP3/caspase-1 axis in the pathogenesis of Alzheimer's disease, and suggest that NLRP3 inflammasome inhibition represents a new therapeutic intervention for the disease.

Comment in

PMID:
23254930
PMCID:
PMC3812809
DOI:
10.1038/nature11729
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center