Send to

Choose Destination
See comment in PubMed Commons below
Nanoscale. 2013 Feb 7;5(3):1009-17. doi: 10.1039/c2nr32760k. Epub 2012 Dec 18.

Near-infrared fluorescent ribonuclease-A-encapsulated gold nanoclusters: preparation, characterization, cancer targeting and imaging.

Author information

School of Chemistry and The Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.


Ultra-small gold nanoclusters (AuNCs) have unique size-dependent optical, electrical and chemical properties. They have emerged as a new nanomaterial with broad applications in optoelectronics, catalysis, biosensing, and bioimaging. Several strategies have been exploited to prepare AuNCs of different "magic number" sizes, using different templates e.g. dendrimers, polyethyleneimines, peptides, and more recently, proteins. Notwithstanding, almost all bio-template-protected AuNCs reported so far exhibit fairly low fluorescence quantum yields (QYs), typically <5%, which is especially true for AuNCs prepared using the protein templates. In this paper, we report a facile, one-pot aqueous synthesis of highly fluorescent AuNCs using bovine pancreatic ribonuclease A (RNase-A) as the bio-template. The as-prepared AuNCs not only fluoresce strongly at the near-infrared (NIR) region (λ(em) = 682 nm), but also exhibit an elevated QY of ∼12%. Additionally, the RNase-A-encapsulated AuNC (RNase-A-AuNC) displays an exceptionally large Stokes shift of ∼210 nm as well as a single dominant fluorescence lifetime of ∼1.5 μs, about three orders of magnitude longer than biological autofluorescence. Furthermore, by coupling vitamin B(12) (VB(12)) to the RNase-A-AuNC, we develop a multifunctional nanoplatform that is suitable for simultaneous targeting and imaging of cancer at the cellular level using Caco-2 cell lines as an in vitro model. Since VB(12) has effective uptake pathways in the digestive system, this nanoplatform may have potential for targeted oral drug delivery in vivo.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Royal Society of Chemistry
    Loading ...
    Support Center