Format

Send to

Choose Destination
See comment in PubMed Commons below
J Immunol. 2013 Jan 15;190(2):812-20. doi: 10.4049/jimmunol.1103797. Epub 2012 Dec 17.

The key role of IL-6-arginase cascade for inducing dendritic cell-dependent CD4(+) T cell dysfunction in tumor-bearing mice.

Author information

1
Division of Immunoregulation, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.

Abstract

Evaluation of immune dysfunction during the tumor-bearing state is a critical issue in combating cancer. In this study, we initially found that IL-6, one of the cachectic factors, suppressed CD4(+) T cell-mediated immunity through downregulation of MHC class II by enhanced arginase activity of dendritic cells (DC) in tumor-bearing mice. We demonstrated that administration of Ab against IL-6R (anti-IL-6R mAb) greatly enhanced T cell responses and inhibited the growth of tumor in vivo. We also found that IL-6 upregulated the expression of arginase-1 and arginase activity of DC in vitro. Tumor-infiltrating CD11c(+) DC exhibited upregulated mRNA expression of arginase-1 but reduced expression of MHC class II in parallel with the increase in serum IL-6 levels at the late stage in tumor-bearing hosts. However, the administration of anti-IL-6R mAb into tumor-bearing mice inhibited both the downmodulation of MHC class II and the upregulation of arginase-1 mRNA levels in DC. Furthermore, we noted that N(ω)-hydroxy-L-arginine or L-arginine, an arginase-1 inhibitor, blocked the reduction in MHC class II levels on CD11c(+) DC during the tumor-bearing state. Finally, we demonstrated that the administration of N(ω)-hydroxy-L-arginine at the peritumor site significantly enhanced CD4(+) T cell responses and inhibited tumor growth. Thus, IL-6-mediated arginase activation and the subsequent reduction in MHC class II expression on DC appeared to be critical mechanisms for inducing dysfunction of the immune system in the tumor-bearing state. Blockade of the IL-6-arginase cascade is a promising tool to overcome the dysfunction of antitumor immunity in tumor-bearing hosts.

PMID:
23248265
DOI:
10.4049/jimmunol.1103797
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center