Format

Send to

Choose Destination
See comment in PubMed Commons below
Mol Cell. 2013 Jan 24;49(2):237-48. doi: 10.1016/j.molcel.2012.11.012. Epub 2012 Dec 13.

Integration-dependent bacteriophage immunity provides insights into the evolution of genetic switches.

Author information

1
Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.

Abstract

Genetic switches are critical components of developmental circuits. Because temperate bacteriophages are vastly abundant and greatly diverse, they are rich resources for understanding the mechanisms and evolution of switches and the molecular control of genetic circuitry. Here, we describe a new class of small, compact, and simple switches that use site-specific recombination as the key decision point. The phage attachment site attP is located within the phage repressor gene such that chromosomal integration results in removal of a C-terminal tag that destabilizes the virally encoded form of the repressor. Integration thus not only confers prophage stability but also is a requirement for lysogenic establishment. The variety of these self-contained integration-dependent immunity systems in different genomic contexts suggests that these represent ancestral states in switch evolution from which more-complex switches have evolved. They also provide a powerful toolkit for building synthetic biological circuits.

PMID:
23246436
PMCID:
PMC3557535
DOI:
10.1016/j.molcel.2012.11.012
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center