Format

Send to

Choose Destination
J Vis Exp. 2012 Dec 5;(70):e4320. doi: 10.3791/4320.

An in vitro preparation for eliciting and recording feeding motor programs with physiological movements in Aplysia californica.

Author information

1
Department of Biology, Case Western Reserve University.

Abstract

Multifunctionality, the ability of one peripheral structure to generate multiple, distinct behaviors(1), allows animals to rapidly adapt their behaviors to changing environments. The marine mollusk Aplysia californica provides a tractable system for the study of multifunctionality. During feeding, Aplysia generates several distinct types of behaviors using the same feeding apparatus, the buccal mass. The ganglia that control these behaviors contain a number of large, identified neurons that are accessible to electrophysiological study. The activity of these neurons has been described in motor programs that can be divided into two types, ingestive and egestive programs, based on the timing of neural activity that closes the food grasper relative to the neural activity that protracts or retracts the grasper(2). However, in isolated ganglia, the muscle movements that would produce these behaviors are absent, making it harder to be certain whether the motor programs observed are correlates of real behaviors. In vivo, nerve and muscle recordings have been obtained corresponding to feeding programs(2,3,4), but it is very difficult to directly record from individual neurons(5). Additionally, in vivo, ingestive programs can be further divided into bites and swallows(1,2), a distinction that is difficult to make in most previously described in vitro preparations. The suspended buccal mass preparation (Figure 1) bridges the gap between isolated ganglia and intact animals. In this preparation, ingestive behaviors - including both biting and swallowing - and egestive behaviors (rejection) can be elicited, at the same time as individual neurons can be recorded from and stimulated using extracellular electrodes(6). The feeding movements associated with these different behaviors can be recorded, quantified, and related directly to the motor programs. The motor programs in the suspended buccal mass preparation appear to be more similar to those observed in vivo than are motor programs elicited in isolated ganglia. Thus, the motor programs in this preparation can be more directly related to in vivo behavior; at the same time, individual neurons are more accessible to recording and stimulation than in intact animals. Additionally, as an intermediate step between isolated ganglia and intact animals, findings from the suspended buccal mass can aid in interpretation of data obtained in both more reduced and more intact settings. The suspended buccal mass preparation is a useful tool for characterizing the neural control of multifunctionality in Aplysia.

PMID:
23242322
PMCID:
PMC3567162
DOI:
10.3791/4320
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for MyJove Corporation Icon for PubMed Central
Loading ...
Support Center