Format

Send to

Choose Destination
See comment in PubMed Commons below
Nature. 2013 Jan 17;493(7432):429-32. doi: 10.1038/nature11723. Epub 2012 Dec 16.

Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system.

Author information

1
Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.

Abstract

A widespread system used by bacteria for protection against potentially dangerous foreign DNA molecules consists of the clustered regularly interspaced short palindromic repeats (CRISPR) coupled with cas (CRISPR-associated) genes. Similar to RNA interference in eukaryotes, these CRISPR/Cas systems use small RNAs for sequence-specific detection and neutralization of invading genomes. Here we describe the first examples of genes that mediate the inhibition of a CRISPR/Cas system. Five distinct 'anti-CRISPR' genes were found in the genomes of bacteriophages infecting Pseudomonas aeruginosa. Mutation of the anti-CRISPR gene of a phage rendered it unable to infect bacteria with a functional CRISPR/Cas system, and the addition of the same gene to the genome of a CRISPR/Cas-targeted phage allowed it to evade the CRISPR/Cas system. Phage-encoded anti-CRISPR genes may represent a widespread mechanism for phages to overcome the highly prevalent CRISPR/Cas systems. The existence of anti-CRISPR genes presents new avenues for the elucidation of CRISPR/Cas functional mechanisms and provides new insight into the co-evolution of phages and bacteria.

Comment in

PMID:
23242138
PMCID:
PMC4931913
DOI:
10.1038/nature11723
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group Icon for PubMed Central
    Loading ...
    Support Center