Format

Send to

Choose Destination
See comment in PubMed Commons below
PLoS One. 2012;7(12):e51448. doi: 10.1371/journal.pone.0051448. Epub 2012 Dec 11.

Toxoplasma gondii clonal strains all inhibit STAT1 transcriptional activity but polymorphic effectors differentially modulate IFNγ induced gene expression and STAT1 phosphorylation.

Author information

1
Massachusetts Institute of Technology, Department of Biology, Cambridge, Massachusetts, United States of America.

Abstract

Host defense against the parasite Toxoplasma gondii requires the cytokine interferon-gamma (IFNγ). However, Toxoplasma inhibits the host cell transcriptional response to IFNγ, which is thought to allow the parasite to establish a chronic infection. It is not known whether all strains of Toxoplasma block IFNγ-responsive transcription equally and whether this inhibition occurs solely through the modulation of STAT1 activity or whether other transcription factors are involved. We find that strains from three North American/European clonal lineages of Toxoplasma, types I, II, and III, can differentially modulate specific aspects of IFNγ signaling through the polymorphic effector proteins ROP16 and GRA15. STAT1 tyrosine phosphorylation is activated in the absence of IFNγ by the Toxoplasma kinase ROP16, but this ROP16-activated STAT1 is not transcriptionally active. Many genes induced by STAT1 can also be controlled by other transcription factors and therefore using these genes as specific readouts to determine Toxoplasma inhibition of STAT1 activity might be inappropriate. Indeed, GRA15 and ROP16 modulate the expression of subsets of IFNγ responsive genes through activation of the NF-κB/IRF1 and STAT3/6 transcription factors, respectively. However, using a stable STAT1-specific reporter cell line we show that strains from the type I, II, and III clonal lineages equally inhibit STAT1 transcriptional activity. Furthermore, all three of the clonal lineages significantly inhibit global IFNγ induced gene expression.

PMID:
23240025
PMCID:
PMC3519884
DOI:
10.1371/journal.pone.0051448
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Support Center