Format

Send to

Choose Destination
J Orthop Res. 2013 May;31(5):672-9. doi: 10.1002/jor.22272. Epub 2012 Dec 13.

Anti-gravity treadmills are effective in reducing knee forces.

Author information

1
Shiley Center for Orthopaedic Research and Education at Scripps Clinic, 11025 North Torrey Pines Road, Suite 200, La Jolla, CA 92037, USA.

Abstract

Lower body positive pressure (LBPP) treadmills permit significant unweighting of patients and have the potential to enhance recovery following lower limb surgery. We determined the efficacy of an LBPP treadmill in reducing knee forces in vivo. Subjects, implanted with custom electronic tibial prostheses to measure forces in the knee, were tested on a treadmill housed within a LBPP chamber. Tibiofemoral forces were monitored at treadmill speeds from 1.5 mph (0.67 m/s) to 4.5 mph (2.01 m/s), treadmill incline from -10° to +10°, and four treadmill chamber pressure settings adjusted to decrease net treadmill reaction force from 100% to 25% of the subject's body weight (BW). The peak axial tibiofemoral force ranged from 5.1 times BW at a treadmill speed of 4.5 mph (2.01 m/s) and a pressure setting of 100% BW to 0.8 times BW at 1.5 mph (0.67 m/s) and a pressure setting of 25% BW. Peak knee forces were significantly correlated with walking speed and treadmill reaction force (R(2)  = 0.77, p = 0.04). The LBPP treadmill might be an effective tool in the rehabilitation of patients following lower-extremity surgery. The strong correlation between tibiofemoral force and walking speed and treadmill reaction forces allows for more precisely achieving the target knee forces desired during early rehabilitation.

PMID:
23239580
DOI:
10.1002/jor.22272
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center