Format

Send to

Choose Destination
See comment in PubMed Commons below
Neuroscience. 2013 Feb 12;231:182-94. doi: 10.1016/j.neuroscience.2012.12.002. Epub 2012 Dec 10.

Age-dependent alterations in cAMP signaling contribute to synaptic plasticity deficits following traumatic brain injury.

Author information

1
The Miami Project to Cure Paralysis and Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA.

Abstract

The elderly have comparatively worse cognitive impairments from traumatic brain injury (TBI) relative to younger adults, but the molecular mechanisms that underlie this exacerbation of cognitive deficits are unknown. Experimental models of TBI have demonstrated that the cyclic AMP-protein kinase A (cAMP-PKA) signaling pathway is downregulated after brain trauma. Since the cAMP-PKA signaling pathway is a key mediator of long-term memory formation, we investigated whether the TBI-induced decrease in cAMP levels is exacerbated in aged animals. Aged (19 months) and young adult (3 months) male Fischer 344 rats received sham surgery or mild (1.4-1.6 atmospheres, atm) or moderate (1.7-2.1 atm) parasagittal fluid-percussion brain injury. At various time points after surgery, the ipsilateral parietal cortex, hippocampus, and thalamus were assayed for cAMP levels. Mild TBI lowered cAMP levels in the hippocampus of aged, but not young adult animals. Moderate TBI lowered cAMP levels in the hippocampus and parietal cortex of both age groups. In the thalamus, cAMP levels were significantly lowered after moderate, but not mild TBI. To determine if the TBI-induced decreases in cAMP had physiological consequences in aged animals, hippocampal long-term potentiation (LTP) in the Schaffer collateral pathway of the CA1 region was assessed. LTP was significantly decreased in both young adult and aged animals after mild and moderate TBI as compared to sham surgery animals. Rolipram rescued the LTP deficits after mild TBI for young adult animals and caused a partial recovery for aged animals. However, rolipram did not rescue LTP deficits after moderate TBI in either young adult or aged animals. These results indicate that the exacerbation of cognitive impairments in aged animals with TBI may be due to decreased cAMP levels and deficits in hippocampal LTP.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center