Format

Send to

Choose Destination
See comment in PubMed Commons below
Am J Pathol. 2013 Feb;182(2):474-84. doi: 10.1016/j.ajpath.2012.10.027. Epub 2012 Dec 8.

Mutant LRRK2 elicits calcium imbalance and depletion of dendritic mitochondria in neurons.

Author information

1
Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.

Abstract

Mutations in the leucine-rich repeat kinase 2 (LRRK2) have been associated with familial and sporadic cases of Parkinson disease. Mutant LRRK2 causes in vitro and in vivo neurite shortening, mediated in part by autophagy, and a parkinsonian phenotype in transgenic mice; however, the underlying mechanisms remain unclear. Because mitochondrial content/function is essential for dendritic morphogenesis and maintenance, we investigated whether mutant LRRK2 affects mitochondrial homeostasis in neurons. Mouse cortical neurons expressing either LRRK2 G2019S or R1441C mutations exhibited autophagic degradation of mitochondria and dendrite shortening. In addition, mutant LRRK2 altered the ability of the neurons to buffer intracellular calcium levels. Either calcium chelators or inhibitors of voltage-gated L-type calcium channels prevented mitochondrial degradation and dendrite shortening. These data suggest that mutant LRRK2 causes a deficit in calcium homeostasis, leading to enhanced mitophagy and dendrite shortening.

PMID:
23231918
PMCID:
PMC3562730
DOI:
10.1016/j.ajpath.2012.10.027
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center