Format

Send to

Choose Destination
See comment in PubMed Commons below
Can J Neurol Sci. 2012 Nov;39(6):747-56.

Tractography in the study of the human brain: a neurosurgical perspective.

Author information

1
Division of Neurosurgery and Neuro-oncology, 3001, 12th Avenue North, Sherbrooke (Québec) J1H 5N4, Canada. david.fortin@usherbrooke.ca

Abstract

BACKGROUND:

The brain functions as an integrated multi-networked organ. Complex neurocognitive functions are not attributed to a single brain area but depend on the dynamic interactions of distributed brain areas operating in large-scale networks. This is especially important in the field of neurosurgery where intervention within a spatially localized area may indirectly lead to unwanted effects on distant areas. As part of a preliminary integrated work on functional connectivity, we present our initial work on diffusion tensor imaging tractography to produce in vivo white matter tracts dissection.

METHODS:

Diffusion weighted data and high-resolution T1- weighted images were acquired from a healthy right-handed volunteer (25 years old) on a whole-body 3 T scanner. Two approaches were used to dissect the tractography results: 1) a standard region of interest technique and 2) the use of Brodmann’s area as seeding points, which represents an innovation in terms of seeds initiation.

RESULTS:

Results are presented as tri-dimensional tractography images. The uncinate fasciculus, the inferior longitudinal fasciculus, the inferior fronto-occipital fasiculus, the corticospinal tract, the corpus callosum, the cingulum, and the optic radiations where studied by conventional seeding approach, while Broca’s and Wernicke’s areas, the primary motor as well as the primary visual cortices were used as seeding areas in the second approach.

CONCLUSIONS:

We report state-of-the-art tractography results of some of the major white matter bundles in a normal subject using DTI. Moreover, we used Brodmann’s area as seeding areas for fiber tracts to study the connectivity of known major functional cortical areas.

PMID:
23230612
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center