Format

Send to

Choose Destination
See comment in PubMed Commons below
Transl Neurosci. 2010 Sep;1(3):188-194.

DEEP BRAIN STIMULATION IN MIDLINE THALAMIC REGION FACILITATES SYNAPTIC TRANSMISSION AND SHORTTERM MEMORY IN A MOUSE MODEL OF ALZHEIMER'S DISEASE.

Author information

  • 1Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA.

Abstract

Based on evidence suggesting that deep brain stimulation (DBS) may promote certain cognitive processes, we have been interested in developing DBS as a means of mitigating memory and learning impairments in Alzheimer's disease (AD). In this study we used an animal model of AD (TgCRND8 mice) to determine the effects of high-frequency stimulation (HFS) on non-amyloidogenic α-secretase activity and DBS in short-term memory. We tested our hypothesis using hippocampal slices (in vitro studies) from TgCRND8 mice to evaluate whether HFS increases α-secretase activity (non-amyloidogenic pathway) in the CA1 region. In a second set of experiments, we performed in vivo studies to evaluate whether DBS in midline thalamic region re-establishes hippocampal dependent short-term memory in TgCRND8 mice. The results showed that application of HFS to isolated hippocampal slices significantly increased synaptic plasticity in the CA1 region and promoted a 2-fold increase of non-amyloidogenic α-secretase activity, in comparison to low frequency stimulated controls from TgCRND8 mice. In the in vivo studies, DBS treatment facilitated acquisition of object recognition memory in TgCRND8 mice, in comparison to their own baseline before treatment. These results provide evidence that DBS could enhance short-term memory in the CA1 region of hippocampus in a mouse model of AD.

PMID:
23227306
PMCID:
PMC3515070
DOI:
10.2478/v10134-010-0023-x
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for PubMed Central
    Loading ...
    Support Center