Format

Send to

Choose Destination
PLoS One. 2012;7(12):e50291. doi: 10.1371/journal.pone.0050291. Epub 2012 Dec 3.

2, 3, 5, 4'-Tetrahydroxystilbene-2-O-beta-D-glucoside improves gastrointestinal motility disorders in STZ-induced diabetic mice.

Author information

1
Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Rode, Wuhan, China.

Abstract

Oxidative stress has recently been considered as a pivotal player in the pathogenesis of diabetic gastrointestinal dysfunction. We therefore investigated the role of 2, 3, 5, 4'-tetrahydroxystilbene-2-O-beta-D-glucoside (THSG) that has a strong anti-oxidant property, in diabetic gastrointestinal dysmotility as well as the underlying protective mechanisms. THSG restored the delayed gastric emptying and the increased intestinal transit in streptozotocin (STZ)-induced diabetic mice. Loss of neuronal nitric oxide synthase (nNOS) expression and impaired nonadrenergic, noncholinergic (NANC) relaxations in diabetic mice were relieved by long-term preventive treatment with THSG. Meanwhile, THSG (10(-7)~10(-4) mol/L) enhanced concentration-dependently NANC relaxations of isolated colons in diabetic mice. Diabetic mice displayed a significant increase in Malondialdehyde (MDA) level and decrease in the activity of glutathione peroxidase (GSH-Px), which were ameliorated by THSG. Inhibition of caspase-3 and activation of ERK phosphorylation related MAPK pathway were involved in prevention of enhanced apoptosis in diabetes afforded by THSG. Moreover, THSG prevented the significant decrease in PPAR-γ and SIRT1 expression in diabetic ileum. Our study indicates that THSG improves diabetic gastrointestinal disorders through activation of MAPK pathway and upregulation of PPAR-γ and SIRT1.

PMID:
23226517
PMCID:
PMC3513302
DOI:
10.1371/journal.pone.0050291
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Public Library of Science Icon for PubMed Central
Loading ...
Support Center