Send to

Choose Destination
See comment in PubMed Commons below
J Mol Graph Model. 2013 Feb;39:71-8. doi: 10.1016/j.jmgm.2012.11.003. Epub 2012 Nov 19.

Association of nicotinic acid with a poly(amidoamine) dendrimer studied by molecular dynamics simulations.

Author information

  • 1Centro de Bioinformática y Simulación Molecular, Universidad de Talca, Casilla 721, Talca, Chile.


The interaction of poly(amidoamine)-G3 (PAMAM-G3) dendrimer with nicotinic acid (NA) was investigated by using molecular dynamics (MD) simulations. First, sample free energy profiles of NA crossing PAMAM-G3 at pH 6 and 3 were computed using the adaptive biasing force (ABF) method. We found that PAMAM-G3 provides a more appropriate environment for NA inclusion when internal tertiary amine groups are unprotonated (at pH 6). However, when internal tertiary amine groups are protonated (at pH 3), the PAMAM cavities are less hydrophobic; therefore the drug-dendrimer interactions become similar to drug-solvent interactions. Traditional MD simulations were also performed to investigate the structural stability of the PAMAM-NA complexes near the free energy minima at pH 6. We found that association of NA and PAMAM adopts a preferred binding mode around the surface of PAMAM, where hydrogen bond (HB) interactions with the amino and amide NH groups of the nearby monomers are established. These interactions are very stable whether additional van der Waals interactions between pyridine ring of NA and methylene groups of the more external monomers of PAMAM are established.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center