Format

Send to

Choose Destination
See comment in PubMed Commons below
Hypertension. 2013 Feb;61(2):368-75. doi: 10.1161/HYPERTENSIONAHA.111.00014. Epub 2012 Dec 3.

Central nervous system Gαi2-subunit proteins maintain salt resistance via a renal nerve-dependent sympathoinhibitory pathway.

Author information

1
Department of Pharmacology and Experimental Therapeutics and the Whitaker Cardiovascular Institute, Boston University School of Medicine, 72 E Concord St, Boston, MA 02118, USA.

Abstract

In salt-resistant phenotypes, chronic elevated dietary sodium intake evokes suppression of renal sodium-retaining mechanisms to maintain sodium homeostasis and normotension. We have recently shown that brain Gαi(2) protein pathways are required to suppress renal sympathetic nerve activity and facilitate maximal sodium excretion during acute intravenous volume expansion in Sprague-Dawley rats. Here, we studied the role of brain Gαi(2) proteins in the endogenous central neural mechanisms acting to maintain fluid and electrolyte homeostasis and normotension during a chronic elevation in dietary salt intake. Naive or bilaterally renal denervated adult male Sprague-Dawley rats were randomly assigned to receive an intracerebroventricular scrambled or Gαi(2) oligodeoxynucleotide infusion and then subjected to either a normal salt (0.4%) or high-salt (8.0%) diet for 21 days. In scrambled oligodeoxynucleotide-infused rats, salt loading, which did not alter blood pressure, evoked a site-specific increase in hypothalamic paraventricular nucleus Gαi(2) protein levels and suppression of circulating norepinephrine content and plasma renin activity. In salt-loaded rats continuously infused intracerebroventricularly with a Gαi(2) oligodeoxynucleotide, animals exhibited sodium and water retention, elevated plasma norepinephrine levels, and hypertension, despite suppression of plasma renin activity. Furthermore, in salt-loaded bilaterally renal denervated rats, Gαi(2) oligodeoxynucleotide infusion failed to evoke salt-sensitive hypertension. Therefore, in salt-resistant rats subjected to a chronic high-salt diet, brain Gαi(2) proteins are required to inhibit central sympathetic outflow to the kidneys and maintain sodium balance and normotension. In conclusion, these data demonstrate a central role of endogenous brain, likely paraventricular nucleus-specific, Gαi(2)-subunit protein-gated signal transduction pathways in maintaining a salt-resistant phenotype.

PMID:
23213191
PMCID:
PMC3562703
DOI:
10.1161/HYPERTENSIONAHA.111.00014
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center