Send to

Choose Destination
See comment in PubMed Commons below
Appl Opt. 2012 Dec 1;51(34):8057-67. doi: 10.1364/AO.51.008057.

Multiwavelength diode-laser absorption spectroscopy using external intensity modulation by semiconductor optical amplifiers.

Author information

School of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL, UK.


A novel opto-electronic scheme for line-of-sight Near-IR gas absorption measurement based on direct absorption spectroscopy (DAS) is reported. A diode-laser-based, multiwavelength system is designed for future application in nonintrusive, high temporal resolution tomographic imaging of H2O in internal combustion engines. DAS is implemented with semiconductor optical amplifiers (SOAs) to enable wavelength multiplexing and to induce external intensity modulation for phase-sensitive detection. Two overtone water transitions in the Near-IR have been selected for ratiometric temperature compensation to enable concentration measurements, and an additional wavelength is used to account for nonabsorbing attenuation. A wavelength scanning approach was used to evaluate the new modulation technique, and showed excellent absorption line recovery. Fixed-wavelength, time-division-multiplexing operation with SOAs has also been demonstrated. To the best of our knowledge this is the first time SOAs have been used for modulation and switching in a spectroscopic application. With appropriate diode laser selection this scheme can be also used for other chemical species absorption measurements.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center