Send to

Choose Destination
See comment in PubMed Commons below
Curr Opin Colloid Interface Sci. 2012 Dec;17(6):350-359.

Advances in cryogenic transmission electron microscopy for the characterization of dynamic self-assembling nanostructures.

Author information

  • 1Department of Materials Science and Engineering Northwestern University, Evanston, IL, USA.


Elucidating the structural information of nanoscale materials in their solvent-exposed state is crucial, as a result, cryogenic transmission electron microscopy (cryo-TEM) has become an increasingly popular technique in the materials science, chemistry, and biology communities. Cryo-TEM provides a method to directly visualize the specimen structure in a solution-state through a thin film of vitrified solvent. This technique complements X-ray, neutron, and light scattering methods that probe the statistical average of all species present; furthermore, cryo-TEM can be used to observe changes in structure over time. In the area of self-assembly, this tool has been particularly powerful for the characterization of natural and synthetic small molecule assemblies, as well as hybrid organic-inorganic composites. In this review, we discuss recent advances in cryogenic TEM in the context of self-assembling systems with emphasis on characterization of transitions observed in response to external stimuli.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for PubMed Central
    Loading ...
    Support Center