Format

Send to

Choose Destination
See comment in PubMed Commons below
J Neurosci. 1990 Mar;10(3):996-1003.

Sex differences and thyroid hormone sensitivity of hippocampal pyramidal cells.

Author information

1
Laboratory of Neuroendocrinology, Rockefeller University, New York, New York 10021.

Abstract

In an effort to determine if sex differences exist in the morphologic characteristics of pyramidal cells and granule cells of the hippocampal formation and whether sex plays a role in determining thyroid hormone sensitivity of these neuronal populations, we used single-section Golgi impregnation to examine the effects of neonatal thyroid hormone administration on hippocampal cells from the brains of adult rats of both sexes. Quantitative analyses of control brains revealed sex differences in the number of primary dendrites and the number of spines on the apical dendritic shaft of CA3 pyramidal cells. These differences showed opposite trends; females possessed more primary dendrites, whereas males showed more apical excrescences. Neonatal treatment with thyroid hormone resulted in long-lasting and dramatic changes of the entire CA3 pyramidal cell. CA3 pyramidal cells from thyroid hormone-treated animals showed significantly larger cell body areas, greater numbers of dendritic branchpoints, and longer dendrites. In addition, CA3 pyramidal cells from thyroid hormone-treated animals showed changes in the morphological characteristics which were shown to be sexually dimorphic; treatment resulted in significantly greater numbers of both primary dendrites and apical excrescences. These treatment differences occurred in both sexes and were of equal magnitude, regardless of sex. On the other hand, no sex differences in the morphologic parameters examined were detected for pyramidal cells in the CA1 region. Moreover, neonatal thyroid hormone treatment did not affect the cell body area, dendritic branch points, or the length of dendrites of these cells.(ABSTRACT TRUNCATED AT 250 WORDS)

PMID:
2319308
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center